KIRKE: Re-engineering of Web Applications to
Mobile Apps

Rohit Mehra
Accenture Technology Labs, Bangalore, India
rohit.a.mehra@accenture.com

ABSTRACT

A large number of web applications are written using server-
side scripting languages. Although web browsers allow
clients to run these applications, it is often cumbersome to
depend on desktops for the services provided by the appli-
cations. Given the popularity and convenience of mobile
devices, there is a clear need to have native mobile apps
driving the applications along with web browsers. In this
paper, we present a solution to re-engineer web applications
developed using server-side scripting languages, into native
mobile apps. The solution takes source code of the web
application along with its test suite as input and produces
corresponding cross-platform mobile apps. The entire re-
engineering process is fully automatic requiring no manual
intervention at any stage. Our solution is generic enough
not only to handle popular server-side scripting languages,
but also to output mobile apps that support diverse pop-
ular platforms including Android, iOS, and Windows Mo-
bile. To showcase the capability and generality of our so-
lution, we have developed a prototype tool KIRKE to han-
dle applications developed using JSP, PHP, and ASP.NET.
We present three case studies based on real-life codebases
to evaluate the correctness, coverage, usability, and perfor-
mance of our solution. The results indicate that KIRKE is
capable of generating a mobile app that preserves the func-
tionality of original web application and uses resources more
efficiently when compared to the web application running on
a mobile browser.

CCS Concepts

eGeneral and reference — Cross-computing tools
and techniques; eInformation systems — Web appli-
cations; Web services; eSoftware and its engineering
— Software reverse engineering;

Keywords

Software re-engineering, Dynamic analysis, Web applica-
tions, Mobile apps

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MOBIQUITOUS ’16, November 28-December 01, 2016, Hiroshima, Japan
© 2016 ACM. ISBN 978-1-4503-4750-1/16/11...$15.00
DOL: http://dx.doi.org/10.1145/2994374.2994401

Vinayak Naik Rahul Purandare Kapish Malik

[IIT-Delhi, India

{naik, purandare, kapish15026}@iiitd.ac.in

135

1 Introduction

The mobile phone is now the primary source of consuming
online media with 60% of the average global mobile phone
users using it every day to surf the web, leading to more
than 60% of the total online traffic [11, 9]. The impact of
mobile phones is more prominent in developing countries, as
the first and primary access to the Internet for most users in
these countries is from mobile phones. This unprecedented
growth in mobile Internet user base has shifted the focus
of developers from the web towards mobile. This surge of
portability and ubiquity of mobile has forced the developers
to lean towards a mobile-first approach and provide mecha-
nisms to allow access to their existing web applications via
mobile devices. Two possible strategies to move towards a
mobile-first landscape are
e Develop server and mobile application from scratch.
This involves high development cost and it takes time.
e Re-engineer the existing web applications to create mo-

bile apps and its compatible server-side code. This

would save development cost and time.
However, challenge is to design a re-engineering solution that
can transform the existing server-side code with correctness
and complete coverage, without compromising much with its
usability. Further, it would be useful to have a solution that
is generic enough to handle multiple server-side scripting
languages and target a broad range of mobile platforms.
Extensive research in the domain of re-engineering has con-
tributed towards various strategies that involve static analy-
sis of the legacy application’s source code and Unified Mod-
eling Language (UML) diagrams. Though manual, sections
of these strategies have been automated using existing code
analyzers to expedite the entire process. One of the draw-
backs of these strategies is the requirement of complex code
parsers and analyzers, enabling relevant information extrac-
tion from large codebases. To increase efficiency and ac-
curacy, they require extensive documentation and diagram
support, in formats understandable by the supporting tools.
High failure rates can be observed if prerequisites are either
unavailable or not following the appropriate formats.
Dynamic analysis techniques overcome these drawbacks.
They allow us to argue about the properties of an applica-
tion by inserting probes into it and then executing it. Our
approach leverages these techniques to extract information
necessary to set up the client-side support for the target
mobile apps. Advantages of this approach include easy mi-
gration to other languages and frameworks using lightweight
codepoint weavers, no requirement of documentation or di-
agrams and complete automation without even having prior

http://dx.doi.org/10.1145/2994374.2994401

knowledge of the application. To the best of our knowledge,
our solution is the first attempt to automate the process of
transforming web applications to mobile apps fully.
We present KIRKE, a prototype of our approach, to trans-
form web applications that are based on popular server-side
languages. As a proof of concept, we transformed three
independent web applications, which are built on different
server-side scripting languages, using KIRKE and conducted
a study to understand the correctness, coverage, usability,
and performance of the transformed apps. The salient fea-
tures of our prototype tool KIRKE are as follows.
1. The solution only takes in source code and test cases
and it does not require any manual interventions
2. The processing time is a function of the number of
methods in the web application. Hence, it is scalable
3. If the web application follows Model-View-Controller
(MVC) architectural pattern, which most large web
applications do, the transformation is further expe-
dited [18]
4. The approach is generic enough to work for all popular
server-side scripting languages
5. It generates native mobile apps, with support to in-
tegrate model specific sensors like accelerometer, GPS
and temperature for all popular mobile platforms
6. The code generated by our tool is human readable and
documented, thereby easy to maintain and extend.

2 Problem and Approach

In this section, we provide the problem statement and give
an overview of our approach.

2.1 Problem Statement

The problem under consideration is to transform an
enterprise-class web application, written using any server-
side scripting language, to a mobile app that preserves its
functionality for all popular platforms with minimal time
and effort. Given that the enterprise applications have a
large number of Lines of Code(LOC), to reduce time and
effort, the transformation should use the existing code with
minimal changes and require minimal manual interventions.
We assume that the application comes with its test suite,
which we believe is a reasonable assumption to make for
enterprise-class applications. Underlying are the major chal-
lenges which we need to address while designing a solution
to the problem.

e Gathering extensive prior knowledge about web ap-
plication’s architecture, data flows, and UML dia-
grams will need extensive time and manual interven-
tion. Therefore, our solution should not assume avail-
ability of any of these artifacts.

e Static analysis techniques require sophisticated, com-
plex language parsers, and analyzers that are hard to
construct and are not always openly available for all
modern languages. Moreover, these techniques are of-
ten less scalable and imprecise. Therefore, any solution
using static analysis techniques is specific to languages
and will not support multiple languages.

e Different mobile platforms require an app to be built
and modified using multiple languages and frame-
works, which requires developers and designers with
platform specific skills. Therefore, our solution should
generate cross-platform mobile apps automatically.

e The generated code must be human readable so that

136

0 4 W 635

SMs

Parameters

Send SMS

Send Free SMS

Mobile Number

Parameter Value

+91

Message
Response Messages

HTTP Status Code ~ Reason

Success
404 API Not Found

(] Server Error

=]
(a) ()

Figure 1: (a) A screenshot of Send SMS page from way2sms.com.

(b) Cross-platform mobile app to communicate with Send SMS
web service, generated by KIRKE.

Left : 140

it can be easily extended and maintained.
2.2 Approach

In this subsection, we give an overview of our approach us-
ing a simple example from a real-life application developed
to build website www.way2sms.com. Figure 1(a) depicts a
webpage, which is used to send an SMS to a desired mobile
number. Our approach transforms the website’s source code
to allow sending SMS from a native mobile app.

To achieve the required transformation, we perform a se-
quence of steps starting with the dynamic analysis of the web
application, in which the application code is automatically
injected with synthetic method calls at pre-defined instru-
mentation points. If the web application is following MVC
design pattern, the number of instrumentation points are
fixed. MVC is the most popular and widely employed archi-
tectural pattern for developing web applications. The MVC
pattern segregates presentation, business logic, and data.
All server-side scripting languages support this pattern ei-
ther out of the box (ASP.NET MVC and JSP-Servlet) or
by using custom-built frameworks (CakePHP for PHP and
Django for Python). Following are the components involved
in MVC pattern.

e Model Responsible for providing logic and methods
for accessing and updating the data layer.

e View Responsible for accepting data from the Model
via intermediary Controller and presenting it using
graphical user interfaces in HTML.

e Controller Every user interaction is converted to a
HTTP request and handled by the Controller. It is
the Controller’s responsibility to delegate the request
to appropriate Model and forward the corresponding
response to be rendered in the View.

We take JSP to illustrate how MVC pattern is followed in a
web application in Figure 2. For JSP, JavaBeans and Plain
Old Java Objects (POJOs) represent the Model. JSPs rep-
resent the View and Servlets represent the Controller. Each
of the user’s interactions goes via HTTP methods in Con-
trollers. Hence, controller methods act as a starting point
for all the services making them candidate instrumentation
points. There are seven such HT'TP methods available in
the JSP Controllers. They are doGet, doPost, doDelete,
doPut, doTrace, doHead, and doOptions. In case a web ap-
plication implements the MVC pattern, we instrument each
of these controller methods to extract runtime information
when these methods are invoked. Otherwise, we instrument

Request —
:é Servlet Java Web Application
(Controller)
Web ﬂ
Browser
Response ISP JavaBeans
(View) (Model)

Figure 2: JSP’s implementation of the MVC design pattern.

each method in the web application, which is still scalable.

We then rebuild the web application along with the injected
code and execute it using the existing test suite. Execu-
tion of the injected code helps in the extraction of runtime
parameters. This information is used to generate wrappers,
around the legacy code using templates and code generators,
acting as web services. The wrappers allow access to the
internal legacy code via HTTP. Deployed web services are
automatically annotated and described using a documenta-
tion framework [2], that provides a live documentation and
testing environment for the generated web services. This
documentation is then leveraged to generate client mobile
applications that can run on multiple mobile platforms in-
cluding Android, iOS, and Windows Mobile. All of the steps
are explained in detail in Section 3.

We have developed a tool KIRKE that implements our ap-
proach and performs this transformation automatically. Fig-
ure 1(b) shows the output cross-platform mobile application
generated by KIRKE for the “Send SMS” page.

3 Proposed Solution

Figure 3 depicts the schematic view of our approach. Our
approach requires source code and test suite of a web appli-
cation as input, and it generates corresponding mobile apps.
All of the steps are fully automated.

For the context of this paper, we define a service as a func-
tionality provided by the web application. A service is trig-
gered directly through human interaction, i.e., submitting a
form, clicking a button or invoking a URL, among others.
A web application consists of multiple pages, each mapped
with one or more services. Our target is to make all the ser-
vices provided by the web application accessible via a native
mobile app.

We will take “Send SMS” service, from www.way2sms.com,
shown in Figure 1 as a running example to illustrate our ap-
proach. This service is used by millions of users for sending
free SMS to any mobile number with a limit of 140 char-
acters per message. Since way2sms is a closed source web
application, we synthesized its background code as shown
in Listing 1. The code accepts a receiver’s mobile number
and message as parameters bound inside a HttpServletRe-
quest object. These parameters are extracted from the re-
quest object and passed to sendMessage() method. The code
prints the appropriate status to screen, based upon success
or failure of the message transmission.

In this section, we will describe the steps involved in the
transformation. We use JSP to illustrate code snippets. The
example is generic enough to illustrate the transformation
process completely, yet simple enough not to get entangled
in the complexity of the application logic and the syntax of
JSP. Since a JSP page internally gets converted to a Servlet
by the web container, we will demonstrate all the steps using
the Servlet code.

137

public class SMS extends HttpServlet {
@Override
protected void doPost(HttpServletRequest request, HttpServletResponse
response) {
Double receiver = request.getParameter("receiver");
String message = request.getParameter("message");
boolean sms_status=SMS.sendMessage(receiver,message);
PrintWriter out = response.getWriter();
out.println("<hl>" + sms_status + "</h1>"); }

Listing 1: Synthesized JSP code for Send SMS service offered by
way2sms.com.

Web Transformed
Application — Application
:1 Web Service Cloud/Server
Instrumentation Wrappers
Instrumented 3)
Web HTTP Web Service
Applicati Wrapper Generation Data Flow
pplication pp JSON/XML
(2) —~
2 @)
Execution Of Swagger S ecification
Instrumented Code gger spec
Generation
—
Swagger & 8
Extracted Data Specification | Mobile Apps
Generation @

Figure 3: Proposed solution architecture depicting the steps re-
quired to transform a web application to mobile app.

3.1 Code Instrumentation and Execution

This composite step corresponds to the dynamic analysis
that we perform. In the first step, KIRKE instruments source
code of the web application with additional code, which at
runtime extracts class names, interfaces, formal arguments,
data types of the arguments, actual values passed to the
arguments, and invoked methods.
To identify instrumentation points in the legacy web code,
we exploit the separation of concerns property of the MVC
design pattern. All controller methods act as candidate in-
strumentation points. In the particular case of JSP, Servlets
acting as Controller contain seven pre-defined do*HTTP
methods, that act as instrumentation points for the pro-
posed approach. They are doGet, doPost, doDelete, doPut,
doTrace, doHead, and doOptions. We instrument each of
these methods to extract runtime information when these
methods are invoked. In case of JSP, the work is least as
the number of instrumentation points is just seven. In the
case of “Send SMS” service, there is a doPost() method, to
which we add a DataExtractor.extract() method, as shown in
Listing 2.
After successful instrumentation of the code, it is compiled
and executed. The objective, while execution, is to ensure
that all the cases in the test suite are executed. For this
example under consideration, we used Selenium, which is a
suite of tools to automate web browsers across many plat-
forms. The data retrieved by the instrumented code is saved
for the next step. For the case of “Send SMS”, the instru-
mented code extracts the following information:

e Class name: SMS

e HTTP method: doPost()

e Parameters: {receiver, message}

e Values passed to the parameters at runtime:
{989968**** "Rs.500 withdrawn concerning transac-
tion id: xyz”}
Data type of parameters: {double, string}

protected void doPost(HttpServletRequest request, HttpServletResponse
response) {

/* Instrumented Code */

DataExtractor.extract(request, response,other_parameters);

/* Legacy Code: Unchanged */ }

Listing 2: Instrumenting synthesized JSP code for Send SMS
service offered by way2sms.com with DataExtractor.extract()
method, in order to extract run time information.

/* ${x} signifies a placeholder x/

public class ${class_name} {

@POST

@Path("${service_path}")

@ApiOperation(value = "${service_description}")
@ApiResponses(value = {${service_response}})
public Response doPost(${service_parameters}){
${wrapper_code} }

Listing 3: JAX-RS template developed using Freemarker
templates, required to develop HTTP Web Services.

The extracted information is used to create HT'TP web ser-
vice wrappers for the controller methods.

3.2 HTTP Web Service Wrapper Generation

Each of the controller methods is wrapped within a HTTP
Web Service that contains code segment to
e Extract URL parameters from the incoming HTTP re-
quest
e Route an incoming request to appropriate legacy code
e Invoke legacy code and marshal parameters to Java
objects to be passed to the legacy code
e Retrieve and unmarshall response generated by the
legacy code
e Implement session management and security
Traditionally, web application code developed using server-
side scripting languages is invoked by passing Java ob-
jects and it returns Java objects. For example, JSP Con-
troller methods are invoked by passing parameters of type
HttpServletRequest and they generate Java objects as a re-
sponse. They do not use JSON or XML for passing data,
which mobile apps use. The wrapper code containing web
service function translates back and forth between Java ob-
jects and JSON or XML to communicate with the legacy
code. The data collected in the previous step has all the
necessary information, such as, the names of the classes and
parameters to generate web service wrapper functions.
We prepared a template for JSP, so that collected data is
substituted in the template to generate the wrapper func-
tions. Listing 3 depicts a sample template for the web service
wrapper based on Java API for REST-ful web services (JAX-
RS). Similar templates can be generated for other server-side
scripting languages.
Listing 4 shows substitution of the data extracted for “Send
SMS” service in the template. The result is a web service
function that can be called via HTTP. This web service
function acts a wrapper code to the original JSP Controller
method. Whenever the wrapper function is called, it mar-
shals the passed values of the parameters to the original
code, traps the response object by refactoring legacy ap-
plication’s return statements, unmarshall’s response object,
and forwards it to the client.

3.3 Swagger Specification Generation

The web application, with the added web
wrapper functions, is deployed on a server. The
wrapper functions help to access legacy services
over HTTP by referring to particular URI’s, e.g.
https://shoppingstore.com/api/sms.json?receiver=

service

138

public class SMS_Service {

@POST

@Path("/sms.json")

@ApiOperation(value = "SMS Sending Web Service")

@ApiResponses(value = {@ApiResponse(code = 404, message = "API Not Found"
) ,@ApiResponse(code = 500, message = "Server Error"),@ApiResponse(
code = 200, message = "Success")})

public Response doPost(@ApiParam(value = "Receiver Mobile Number",
required = true) @QueryParam("receiver") Double receiver,
@ApiParam(value = "Message To Be Sent", required = true)
@QueryParam("message") String message){

/* Wrapper code to invoke doPost() method, under SMS Class with receiver
and message as parameters x/ }

}

Listing 4: HTTP Web Service wrapper based on JAX-RS
specification required to communicate with synthesized JSP code
for Send SMS service offered by way2sms.com.

/* ${x} signifies a placeholder "/sms" : {
*/ "post" : {
"${path}" : { "summary" : "Send SMS",
"${http-method}" : { "description" : "SMS Sending Web
"summary" : B Service",
"description" : "operationId" : "doPost",
"operationId" : , "parameters" : [{
"parameters" : [{ "name" : "receiver",
"name" : "in" : "query",
"in" : "description" : "Receiver Mobile
"description" : Number",
"type" : "type" : "double"
H, A
"responses” : { "name" : "message",
"${response-code}" : { "in" : "query",
"description" : "description" : "Message To Be
} Sent",
} "type" : "string" }1,
} "responses" : {
404" : {
"description"” : "API Not Found"
200" : {
"description" : "Success"},
"500" : {
"description" : "Server Error"
}
}
}
Listing 5: Swagger Listing 6: Swagger specification

specification template used
to document a HTTP Web
Service.

generated by Swagger-Codegen
representing HTTP Web Service
wrapper for Send SMS service
offered by way2sms.com.

989968&message=TransactionCompleted relates to a
synthesized HTTP Web Service, which sends an SMS to a
mobile number specified as the receiver. The web service
requires receiver’s mobile number and message as query
parameters. It returns a JSON object as a response. The
later generated mobile app utilizes these HTTP web service
URLs to talk to the legacy code. To automatically generate
the mobile apps, we need a mechanism to translate the web
service URIs to mobile application code.

We use a tool called Swagger-Codegen that automatically
converts web service wrapper to the corresponding Swagger
specification. The Swagger specification is a formal struc-
ture widely used to document web services. The formalized
JSON documentation contains all the information required
to interface with the API such as access URL, parameter
description and types, and response codes. Listing 5 shows
a sample swagger specification template.

Web service wrappers contain annotations required to doc-
ument a particular API. Before proceeding with the mo-
bile apps generation, all wrappers are converted to corre-
sponding Swagger specifications. Swagger-Codegen extracts
specification from the server code, using these annotations
and wrapper code. Listing 6 shows the extracted swagger
specification for the Send SMS module. Here, @ApiOper-

ation specifies the functionality that the API is providing,
@ApiResponses provides information about HTTP response
codes that the API will generate while execution and @Api-
Param describe parameters required to invoke the API.

3.4 Mobile Apps Generation

In this step, we use the Swagger specification of the HTTP
web services to generate native mobile apps. We use Apache
Cordova [4] to generate mobile apps from the Swagger spec-
ifications. Apache Cordova allows a native mobile app to
be built using HTML, CSS, Javascript, and AJAX. It even
allows access to mobile’s native APIs, such as camera, ac-
celerometer, and file manager, to enrich the functionality
of the app. Apache Cordova takes in Swagger specification
and build forms that use the newly generated web service to
build a mobile app, using corresponding native mobile SDK.
Swagger’s live testing framework called Swagger-UI parses
Swagger specification and generates a form-based user inter-
face and necessary background code to communicate with
the service depicted by the specification. We leverage this
generated user interface and make it mobile friendly us-
ing Twitter Bootstrap, that provides CSS classes to make
responsive interface elements. We pass this interface and
code through Apache Cordova, which converts it to a cross-
platform mobile app. Figure 1 shows the automatically gen-
erated mobile app for the Send SMS module. The generated
mobile app supports a form-based user interface, which al-
lows the user to easily type in parameters or data that is
required to be sent to the server for processing. Clicking Try
it out! button invokes mobile apps background code respon-
sible for sending data to appropriate HTTP URL, getting
and rendering the server’s response on the user interface.

4 Discussion of the Solution

In this section, we discuss generalizing our approach to
server-side scripting languages other than JSP and also the
usability aspects of generated mobile apps.

4.1 Generalizability

JSP, PHP, and ASP.NET are the most widely used server-
side programming languages for developing web applica-
tions. 78% of the websites using server side programming
languages are based on PHP while it is 20% and 4% for
ASP.NET and Java (sum is greater than 100% as many web-
sites use more than one server-side programming language)
[16]. Hence, we discuss generalizability from the point of
view of these three languages. Our choice of using dy-
namic analysis was primarily driven by its advantages over
static analysis, including easy language portability, higher
precision, simplicity, scalability, and smaller development
cost. This choice makes the techniques generalizable to other
server-side scripting languages, such as PHP and ASP.NET.
The only change required is the change of templates and
instrumentation code, which is a one-time effort for any lan-
guage.

4.1.1 ASPNET

ASP.NET is a modern web development framework by Mi-
crosoft and supports three different patterns out of the box,
web pages, web forms, and MVC. For ASP, C# files kept
inside Models directory represent the Model. Web Forms
represent the View, and C# files kept inside Controllers di-
rectory represents the Controller. Each of the user’s interac-
tions goes via methods defined under Controllers directory.
Hence, these methods act as a starting point for all the ser-

139

public class SMSController : Controller{

[HttpPost]

public async Task<ActionResult> SendSMS(SMS model){
boolean sms_status=SMS.sendMessage(model);
ViewBag.status = sms_status;

return View(); } }

Listing 7: Synthesized ASP.NET code for Send SMS service
offered by way2sms.com.

public class SMSController : Controller{
[HttpPost]
public async Task<ActionResult> SendSMS(SMS model)
{ /% Instrumented Code %/
Hashtable request = new Hashtable();
request[0] = model;
DataExtractor.extract(request, this.GetType().Name, ViewContext.
RouteData.Values["action"]);
/* Legacy Code */ }
}

Listing 8: Instrumenting synthesized ASP.NET code for Send
SMS service offered by way2sms.com with DataExtractor.extract(),
to extract run time information.

vices, which makes them candidate points for instrumen-
tation. All Controller names end with “Controller” suffix,
which makes it easy to locate those files.

Each method in the Controller maps to a unique URI in the
web application, along with a corresponding View. There
exists one-to-one mapping between the method in Controller
and URI. KIRKE uses these methods to extract data. As
each user request goes via these Controller methods, it pro-
vides complete coverage to the KIRKE. Every Controller
method acts as an instrumentation point to instrument code
for data extraction. Listing 9 shows the wrapper template
for ASP.NET. Listings (7, 8, 10) demonstrates Send SMS
service transformation for ASP.NET.

Though the proposed approach is applied in similar ways to
both JSP and ASP.NET applications, we notice some fun-
damental differences between both the languages. In JSP, a
Controller method can adopt only seven names as described
earlier. On the other hand, methods in ASP.NET Controller
can assume any developer defined custom name. Controller
in ASP.NET can accept multiple parameters as opposed to
a single HttpServletRequest object in JSP. Instrumentation
codes need to be customized depending upon parameters
for the Controller methods. ASP.NET even accepts Model
objects as parameters. Hence, instrumentation code is mod-
ified to extract information from model classes about data
members passed inside a Model. ASP.NET uses Web API
in place of JAX-RS for wrapper generation. This is achieved
by changing the template to support C# Web APIs. Rest
of the steps, namely swagger specification and mobile app
generation, are similar.

4.1.2 PHP

PHP is the most widely used server-side programming lan-
guage on the web. Unlike JSP and ASP.NET, PHP supports
MVC pattern via use of frameworks, such as CakePHP and
Laravel. PHP applications developed using CakePHP or any
other MVC framework follow a concrete MVC structure in-
stilled by the framework. For PHP, files kept inside models
directory represent the Model. HTML represents the View
and PHP files kept inside controllers directory represents the
Controller. Each of the user’s interactions, goes via meth-
ods defined under controllers directory, hence these meth-
ods act as a starting point for all the services, which makes
them candidate points for instrumentation. Similar to ASP,
names of the Controller methods are developer-specific, as
no naming restrictions are enforced by the framework. Due

/* ${x} signifies a placeholder */
public class ${class_name} : ApiController
{ /// <summary> ${service_description} </summary>
/// <response code="${service_response_code}">${service_response_desc
}</response>
public async Task<HttpResponseMessage> Get(${service_parameters})
{ ${wrapper_code} }
}

Listing 9: ASP.NET Web API template developed using
Freemarker templates, needed to develop C# Web Services.

public class SMS_Service : ApiController
{ // POST api/<controller>
/// <summary> SMS Sending Web Service </summary>
/// <param name="receiver">Receiver Mobile Number</param>
/// <param name="message">Message To Be Sent</param>
/// <response code="200">Success</response>
/// <response code="500"">Server Error</response>
public async Task<HttpResponseMessage> POST(Double receiver, String
message) {
/* Calling Code To Invoke SendSMS() method, under SMSController Class
with parameters being Receiver and Message converted to SMS
Model */ }
}

Listing 10: HTTP Web Service wrapper based on ASP.NET
Web API specification required to communicate with synthesized
ASP.NET code for Send SMS service.

to generalizable nature of our approach, steps required for
JSP and ASP.NET transformation will be followed out of
the box in case of PHP. Only changes required are modifica-
tions in instrumentation code and web service template. As
an exception for PHP, CakePHP provides methods to pro-
duce web services without creating wrappers, where legacy
code is routed to a JSON view, rather than application de-
fined HTML views. View automatically fetches the relevant
data and forwards a JSON representation of it. This elim-
inates the need for wrapper templates in case of CakePHP,
further expediting the re-engineering process.

4.2 Usability of the Mobile App

The re-engineered mobile app displays user interface gener-
ated using Swagger-UI and is composed of interactive forms
to communicate with HT'TP web service URLs. Mobile app
users fill the forms as per the presented documentation ex-
tracted from the web application. Upon submitting the
forms, the mobile app sends a HTTP request to the web
service URL and renders the response in the user interface
of the mobile app. The generated code for the mobile apps
is such that the interface adapts itself to orientation changes
of portrait and landscape modes. Look and feel of the in-
terface remains identical across various platforms due to the
usage of Twitter Bootstrap, that helps generate responsive
user interfaces. It provides CSS classes to build additional
user interface elements. In future versions of KIRKE, we
intend to improve the Ul, such as, by porting images and
design elements from the web applications to mobile apps.
This way, the mobile app will have a similar look and feel
as that of the web application.

5 Evaluation

Our evaluation of KIRKE focuses on the coverage, correct-
ness, ease of use, and efficiency of the execution of a re-
engineered application. We define coverage as the degree of
the functionality supported by the generated mobile app in
comparison with the original application, and correctness as
the degree of the semantical correctness of the functionality
that was covered by the mobile app. We define the ease of
use as the comparative effort of the users who interact with
a web application as well as the transformed mobile app
and efficiency as the resource utilization in terms of CPU,

140

memory, and battery consumption by the mobile app while
performing a task. KIRKE’s coverage depends on the quality
of the test suite used in terms of the statement coverage. We
expect that for an enterprise web application, a good test
suite with a high statement coverage will always be available
as one of the essential artifact’s developed as a part of the
application development process.

5.1 Selection of the Web Application

According to mobile analytics firm Flurry, from 2013-2014
shopping app usage recorded the highest growth than any
other category of apps [1], which depicts huge demand of
e-commerce websites turned into mobile apps. Hence, we
selected three open source shopping cart applications based
on JSP, PHP and ASP.NET for the evaluation. All three
applications provide common functionalities of catalog man-
agement, customer management, online retail management,
and customer order processing system.

Table 1 displays the web applications used for evaluation.
Total LOC is an indicative of the project size. Server-
side LOC depicts LOC written using respective server-side
scripting languages only. It does not take into account
code written using other languages, such as HTML, CSS,
Javascript among others, in the same project. Transforma-
tion time refers to the time consumed by KIRKE to transform
web application to corresponding mobile app, excluding time
taken for test suite execution on instrumented code, that
varies with the number of test cases in the test suites. We
conducted transformations on a laptop running on an Intel
dual core 64-bit processor with 4GB of RAM.

5.2 Methodology

We selected ten important functionalities for all three web
applications. The web application is composed of several
user interaction screens spanning these ten functionalities
from a customer’s point of view, where customer being a
mobile app user in an e-commerce scenario. These function-
alities represent all the steps required to complete a transac-
tion on an e-commerce platform. Since all three applications
belong to shopping cart category, they all possess mentioned
functionalities. Some of the functionalities include viewing
product catalog, adding a product to shopping cart, search-
ing for a product, among others.

Instrumented Methods denote the number of methods iden-
tified and instrumented using KIRKE. These methods refer
to Controller methods in the web application. Total Meth-
ods denote the number of methods that need to be instru-
mented in the absence of MVC controller methods, thereby
increasing the time for code instrumentation. The amount
of work would still be less than rewriting entire project into
code that follows service oriented architecture and then cod-
ing the mobile apps. To check correctness and ease of use,
we conducted a survey and asked participants to use the ten
functionalities on web applications and transformed mobile
apps. We then compared the numbers from both the sur-
veys. To check ease of use, we asked the participants to give
a subjective rating of their difference in experience.

We conducted a survey of sixty participants, majoring/ma-
jored in Computer Science and have a basic familiarity with
mobile technology. Participants were divided into groups of
twenty, to conduct the survey for the three case studies. We
refrained from repeating candidates for different case studies
as that could have resulted in functionality level comparisons
depending upon legacy web application, and may have lead

Language Web Application Description Total LOC Server-side LOC Total Methods Instrumented Methods Transformation Time
JSP Saikiran Bookstore Marketplace for books and 14 K 10 K 121 80 84 sec
stationary products [7]
PHP CakePHP Shopping Cart Marketplace for Fashion Ap- 50 K 15 K 76* 76 90 sec
parels [10]
ASP.NET Open Order Framework Order processing system for 37K 6 K 300 143 104 sec

small business owners [6]

Table 1: List of applications used for evaluation and corresponding transformation metrics.*For the PHP application, Total Methods
equals Instrumented Methods, as entire business logic resides inside Controllers only, which is not a good practice.

(ssp |

[(asp | EDIE (PP

OYes ®No

(a) (b)
Figure 4: Survey analysis for JSP, PHP and ASP.NET case stud-
ies. (a) Percentage of functionalities successfully executed on the
mobile app. (b) User experience with the mobile app in compar-
ison with that of web application.

E Better C1Same [Worse

to biased feedbacks. Each participant first completed the
ten functionalities on web application and then performed
the same on the re-engineered mobile app. In particular, we
asked the following questions to the participants.

1. Whether you were able to execute functionalities suc-
cessfully via both web and mobile versions?

2. If not, what problem/s they experienced?

3. Whether responses on both usages matched or not?
For example, ViewCatalog should display exactly same
products and information on both the systems.

4. How was their experience using the mobile application,
better, same, or worse?

5.3 Results

Figure 4 provides a compiled analysis. According to the sur-
vey results, 100% of the participants were successfully able
to execute the functionalities and get same responses using
the web applications and mobile apps. This ensures correct-
ness for the chosen functionalities for all three applications.

At least 72% candidates marked their responses to be “same”
for all three case studies, regarding how they felt about us-
ing the mobile app. This measures ease of use, given already
existing familiarity with the web app. 17% responses were
marked “worse” while using the mobile app. This is be-
cause the mobile app, coming out of the tool, provides basic
UI sans the images and icons in the web application. The
messages from the mobile app are in JSON or XML format
and not hidden from the user. Many participants were al-
ready familiar with such messages, but some were are not.
As evident from the survey analysis, results for different case
studies are synchronized, with no significant contrast, ensur-
ing generalizability of the proposed approach. The resulting
mobile apps are platform independent. We successfully de-
ployed and tested them on Android (5.1.1), iOS (version 8),
and Windows (version 8.1) mobile platforms. Though na-
tive, mobile apps project similar user interface for all the de-
vices. Android-based mobile application executables along

141

JSp
Metrics ‘Web Application Mobile App
Battery Consumption 333 mW 205 mW
CPU Utilization 26% 10%
Memory Usage 184 MB 98 MB
PHP
Metrics Web Application Mobile App
Battery Consumption 304 mW 221 mW
CPU Utilization 9% 6%
Memory Usage 254 MB 112 MB
ASP.NET
Metrics Web Application Mobile App
Battery Consumption 251 mW 211 mW
CPU Utilization 14% %
Memory Usage 220 MB 101 MB

Table 2: Performance comparison between web application run-
ning in a mobile browser and generated mobile application for all
three case studies (JSP, PHP and ASP.NET).

with a video demonstration representing mobile app usage
on all three mobile platforms are available for download at
https://github.com/rohitmehra/legacymodernization.

5.4 Performance

We conducted the performance evaluation of generated mo-
bile applications in comparison to the web applications.
While the web applications were executed on Mozilla Firefox
mobile browser (ver. 45.0.1), the mobile applications were
executed natively on the same Android (ver. 5.1.1) device
with Snapdragon 810 processor and 4GB RAM. We profiled
both systems for one minute of usage while performing the
same tasks. We used Power Tutor (ver. 1.4) for measuring
battery consumption and GameBench (ver. 3.2.2p) profiler
for measuring CPU and memory consumption.

Table 2 shows the collected data. Overall, the generated mo-
bile apps performed better in terms of resource utilization
as they are native apps with only essential libraries. Both
Apache Cordova applications and Web Browser use simi-
lar HTML rendering engines under the hood. However, web
browsers provide far more features, including extensions and
plugins, navigation controls, background services, and com-
plex user interface that bloats its resource utilization. This
is evident from the mobile app sizes where our mobile apps
are 2.5 MB in size as compared to 39MB for the Mozilla
Firefox android browser.

6 Related Work

Our approach addresses the problem of re-engineering legacy
applications and generating code which targets multiple mo-
bile platforms. Accordingly, we split the related literature
into these two categories.

Re-engineering of Applications Liu et al. [12] presents
motivation and key issues in performing migration of non-
web applications to web services. Sneed [15] proposes a way

https://github.com/rohitmehra/legacymodernization

to create a wrapper around the non-web application to ex-
pose the internal business processes using the web services.
Major steps in this process includes salvaging the legacy
code to extract out business processes, which can then be
linked to a wrapper. The wrapper must have interfaces
and arguments similar to the legacy business process to for-
ward the control to the legacy system and retrieve processed
response. This process is semi-automated, requires static
data flow analysis and is based on languages such as C and
COBOL that are not typically used in modern web appli-
cation architectures. In comparison, our approach is fully
automated, works for all modern languages, and eliminates
the need for computationally intensive and often imprecise
static data flow analysis.

Matos et al. [13] leverage the architecture proposed by Sneed
[15] but instead of plain code refactoring, they propose anno-
tating the source code using specific pattern matching rules,
reverse engineering the code to its corresponding graph rep-
resentation, and then applying graph transformation rules
to obtain the re-engineered application. Their approach ap-
plies to traditional desktop applications instead of web ap-
plications which our proposed approach supports. All of
the methods discussed above are primarily based on static
code analysis. Following paragraph discusses transforma-
tions where some operations are performed manually. Re-
searchers at Microfocus defined manual steps to transform a
legacy Cobol application to a Java web application, with the
help of cross compilers and visual cobol IDE plugin [3]. In
their approach, operations including candidate service iden-
tification, knowledge gain, and wrapper generation are per-
formed manually with the support of provided IDE, contrast
to proposed approach’s automated way. Marchetto et al.
[14] describes the steps and tools required to perform man-
ual migration and emphasizes on testing for correctness. In
comparison, our approach is fully automatic.

Generation of Mobile Apps for Web Applications Go-
native.io [8] and Appypie.com [5] provide an automated ap-
proach to transform web application to mobile apps. Instead
of re-engineering a web application, they render a snapshot
of web application in a web view embedded within a native
mobile app. It is similar to running a web application in-
side a mobile web browser. This approach does not provide
access to the web application via web services. This limits
its usability on mobile platforms, as a legacy web appli-
cation designed for desktop environment is compacted and
projected on mobile devices. In addition, since web browsers
run slow on mobile devices, there is a need to develop native
mobile apps, than developing mobile websites [17].

7 Conclusion and Future Work

In this paper, we looked at the problem of transforming
enterprise-class web applications, written using server-side
scripting languages, into mobile apps. For broad applicabil-
ity, the approach for the transformation is generic and scal-
able enough to consider multiple popular scripting languages
and mobile platforms. In our knowledge, the tools that are
currently available either require some manual interventions
or they provide a small subset of original application’s func-
tionalities.

We propose an approach based on dynamic analysis to pro-
vide a solution that suits out needs. The only assumption
that we make is the availability of test suite, which is sound
for the case of enterprise-class applications. We built a tool

142

KIRKE that implements our approach for three most pop-
ular server-side scripting languages. We evaluate our tool
in terms of coverage, correctness, ease of use, and efficiency
in execution. For the evaluation, we consider three open
source codebases developed by third-party developers. We
consistently find KIRKE to perform satisfactorily for the case
studies. While we leverage the use of MVC architectural pat-
tern in the web applications to expedite the transformation,
we don’t depend on the use of any pattern. KIRKE takes
in web application’s server code to build web services out
of it. It then exposes these services through automatically
generated mobile app. KIRKE does not transform web appli-
cation’s client code. It does not matter what web application
does, be it shopping site or even an online game.

In the future, we intend to improve the Ul such as, by port-
ing images and design elements from the web applications
to mobile apps. This way, the mobile app will have a simi-
lar look and feel as that of the web application. Our current
implementation of KIRKE supports CakePHP framework for
PHP. We will support other frameworks, such as Laravel and
Zend, in the future. Generated mobile app’s user interface
displays JSON or XML responses, which shall be replaced
by incorporating interface elements, in future.

References

[1] Shopping, productivity and messaging give mobile another
stunning growth year.

2] Swagger: Rest documentation framework.
3] Take your step-by-step journey from cobol to mobile.

[
[
[4] Apache. Apache cordova, learn more about the project.
[5] Appypie.com. Convert website to mobile apps, 2015.

[

6] L. Bacaj. A lightweight shopping cart web application in
asp.net mvc 5.

[7]
(8]

Github. Saikiran bookstore shopping cart.

GoNative.io. Convert your web application into native an-
droid and ios, 2015.

[9] InMobi. Global mobile media consumption wave 3 report.
[10]

(11]

A. Kende. Shopping cart built with cakephp php framework.

A. Lipsman. Major mobile milestones in may: Apps now
drive half of all time spent on digital, 2014.

Y. Liu et al. Reengineering legacy systems with restful
web service. In Computer Software and Applications, 2008.
COMPSAC’08. 32nd Annual IEEE International, pages
785-790. IEEE, 2008.

C. Matos et al. Migrating legacy systems to service-oriented
architectures. FElectronic Communications of the EASST,
16, 2009.

F. Ricca et al. From objects to services: toward a step-
wise migration approach for java applications. International
jJournal on software tools for technology transfer, 2009.

H. M. Sneed et al. Wrapping legacy software for reuse in
a soa. In Multikonferenz Wirtschaftsinformatik, volume 2,
pages 345-360, 2006.

Y. Sonmez et al. Performance comparison of php-asp web
applications via database queries. In Proceedings of the
The International Conference on Engineering & MIS 2015,
page 45. ACM, 2015.

Z. Wang et al. Why are web browsers slow on smartphones?
In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, pages 91-96. ACM, 2011.

K. Watanabe et al. A web application development frame-
work using code generation from mvc-based ui model. In
Distributed Computing, Artificial Intelligence, Bioinformat-
ics, Soft Computing, and Ambient Assisted Living, pages
404-411. Springer, 2009.

(12]

(13]

14]

[15]

(16]

(17]

(18]

