
ANNE: Improving Source Code Search using Entity
Retrieval Approach

Venkatesh Vinayakarao
IIIT-Delhi, India

venkateshv@iiitd.ac.in

Anita Sarma
Oregon State University, USA
anita.sarma@oregonstate.edu

Rahul Purandare
IIIT-Delhi, India

purandare@iiitd.ac.in

Shuktika Jain
IIIT-Delhi, India

shuktika12163@iiitd.ac.in

Saumya Jain
IIIT-Delhi, India

saumya12089@iiitd.ac.in

ABSTRACT
Code search with natural language terms performs poorly
because programming concepts do not always lexically match
their syntactic forms. For example, in Java, the program-
ming concept array does not match with its syntactic repre-
sentation of []. Code search engines can assist developers
more effectively over natural language queries if such map-
pings existed for a variety of programming languages. In this
work, we present a programming language agnostic tech-
nique to discover such mappings between syntactic forms
and natural language terms representing programming con-
cepts. We use the questions and answers in Stack Over-
flow to create this mapping. We implement our approach
in a tool called Anne. To evaluate its effectiveness, we con-
duct a user study in an academic setting in which teaching
assistants use Anne to search for code snippets in student
submissions. With the use of Anne, we find that the partici-
pants are 29% quicker with no significant drop in correctness
and completeness.

Keywords
Code Search, Natural Language Processing, Information Re-
trieval, Assignment Grading

1. INTRODUCTION
Search has become indispensable in the modern program-

ming context [26], where navigating through thousands of
lines of code is infeasible. Developers search for code frag-
ments or keywords to locate or navigate to a particular pro-
gram concept, when they debug, write code, look for code
fragments to reuse, or try to understand an API usage.

Current IDE search features (e.g., Eclipse search) or code
search tools (e.g., Sourcerer [5], Portfolio [24]) work by in-
dexing string tokens in the code as keywords. Therefore,
searching for a particular programming concept requires an
understanding of the syntactic equivalents of that concept.
For example, if a developer wants to find whether her C
code contains a function that uses an integer array, she may

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM ’17, February 6–10, 2017, Cambridge, United Kingdom.
c© 2017 ACM. ISBN 978-1-4503-4675-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018661.3018691

formulate a query based on the construct “int files[]”.
However, such a query will miss the occurrences of functions
that have “int ∗files” in their definitions.

Currently, queries that include natural language (NL) give
poor results [13]. Table 1 shows that this problem exists
in established web-scale code search engines as well. This
is because there is no mapping between the programming
concepts and their associated syntactic forms in code.

We extract these mappings from developer discussions in
Stack Overflow (SO) [3]. Programming concepts are identi-
cal in principle to named entities [8]. They are also named
and may have multiple surface forms. First, to discover
them, we infer the NL terms that refer to these entities by
using Parts of Speech (PoS) tagging and pattern matching
of these sequences. Then we extract the associated syntac-
tic forms to create an entity knowledge base. Finally, each
line of a given source code is annotated with their associated
NL terms using the knowledge base, which then allows for
regular keyword-based searches on these terms. The pro-
cess of creating the knowledge base is largely agnostic to
programming languages.

To the best of our knowledge, this is the first attempt to
discover entities that appear in different forms in text and
source code. As a proof of concept, we have implemented
our approach in a tool named Anne1: ANNotation Engine,
which includes entity knowledge bases for C and Java.

We evaluated the usefulness of the approach through a
user study, in the context of Teaching Assistants (TA) pro-
viding feedback on submissions to class assignments. We
recruited 16 participants, who were currently or had been a
TA for introductory CS courses. We used a within-subject
study design, where participants in the Control condition
used regular code, and those in the Experimental condition
used code annotated with the programming concepts (as
identified by Anne). There were two tasks, one an assign-
ment in C and the other in Java. We found correctness scores
(precision) of participants to be equivalent across the treat-
ment groups. This is likely because participants were TAs
and had experience grading this type of submissions. The
time to search was reduced by 29% without compromising
on correctness and completeness.

Our key contribution is a programming language agnostic
technique to map lines of source code with relevant program-
ming concepts, so as to support code search engines for NL
queries. This allows the users to query on programming con-
cepts using NL terms, and need not recall the exact syntactic
terms or patterns.

1http://tools.pag.iiitd.edu.in:8092/anne/index.html

211

Table 1: P@10 of existing code search engines for
NL queries containing programming concepts.

Query Krugle [1] openHUB [2]

declare array 0.1 0

concatenate two arrays 0.2 0

check if a string is a numeric type 0 0

assign to first element in an array 0 0

2. MOTIVATION
In this section, we present our formative study to motivate

the work, followed by a discussion on potential applications,
and a specific use case for this line of work.

2.1 Formative Study
As formative work, we surveyed to understand whether,

and under what conditions developers use natural language
terms in their search queries, and whether they face any
difficulties when querying for a programming concept by us-
ing its syntactic form. We surveyed 25 developers working
in leading software development organizations. 18 of these
developers had 3 years or less experience in programming,
while others had experience ranging from 3 to more than 10
years in industry. We consider the former group as novices.

The survey questions and a summary of responses are
listed in Table 2. More details are shared on Anne web-
site. Our results indicate that novice developers, developers
who are starting on a new project, or investigating code
that they had not worked on for some time face difficulties
in finding the right “code” in their project. 44% participants
faced situations where the code did not match the NL term
they would have used to search for that functionality. 72%
participants felt that it is difficult to search for specific code
syntax in current IDEs. One participant responded: “I’d
search for the patterns manually using a simple find opera-
tion.” Another said, “I might search for [different] keywords
like ‘mid’ or ‘pivot’ when searching for a particular sort al-
gorithm”. Unless the developers can find the correct query
words, they will need to manually examine the code.

Code search still happens through keyword search. One
participant noted “[I] search the source code files using key-
words/ Mnemonics in the hope that the developer might have
used meaningful keywords in the code. Example: for the
quicksort example, I might [search] for keywords like mid or
pivot”. 60% felt it to be “important” or “very important” to
support NL queries. For example, a participant mentioned:
“... [search function in an IDE] was highly useful, but it
had no concept of natural language based result, which in
my opinion would have proved to be even more useful and
would have led to faster search results”.

Therefore, we conclude that programmers in the indus-
try will benefit from a programming language agnostic tech-
nique that maps source code lines with its associated pro-
gramming concepts, which can be used to support search
engines that need NL querying.

2.2 Applications
In general, wherever there are NL queries involved in code

search, our approach would be useful. In addition to web-
scale code search, NL-based search over source code occurs
in several software engineering contexts too, such as cod-

Table 2: Formative study on 25 real industry devel-
opers indicates that this research will be useful.

Survey Questions and Responses

(1) Sometimes when reading a piece of code, the code snippet
feels familiar but you may not know how it is popularly called.
For example, in a very simplistic case you may be looking at a
Quick Sort implementation. After reading the code, you may
understand that the code is sorting integers, yet, you may not
know that this algorithm is called “quick sort”. Have you ex-
perienced this?

Yes: 44% (11); No: 56% (14);

(2) Sometimes it is difficult to search for a specific code snippet
in a project by using existing IDEs. For example, you may
want to search how a particular element is initialized in the
code. As another example, you may want to search for multiple
substring computations and return statement with increment
to find the Levenshtein distance implementation. Have you
ever experienced this?

Yes: 72% (18); No: 28% (7);

(3) Let us assume a situation where a developer wants to search
for a quick sort implementation. The implementation is not
available under the name “quicksort” and hence the developer
wants to find all code snippets where “increment”, and “mid-
point computation” occur. To do so, the developer opens an
IDE and creates a natural language query, “increment, mid-
point computation”. The IDE then automatically understands
that, for Java, increment is “ ++” or “ + 1”, and mid-point is
“/2”. It finds all methods where such constructs exist.

(3.1) How important do you consider this functionality?
(>=3 on a scale of 5)

Important or Neutral: 92% (23); Not Important: 8% (2);

(3.2) How often would you need to use this functionality?
(>=3 on a scale of 5)

Often: 80% (20); Not so often: 20% (5);

ing [26], maintenance [25], summarization [30, 23] and pro-
gram comprehension [22]. To evaluate our work, we have
used one scenario from academic code search related to pro-
gramming assignments. Code search for programming as-
signments is another real problem and TAs find our tool
very useful.

2.3 Problem Overview
Here, we list one use case and explain how our approach

solves the problem.

Problem. Sarah is a TA for an introductory Java program-
ming class that has 100 students. She has to evaluate a
programming assignment on enum which specifically requires
students to use parameterized enumeration. To assess cor-
rectness, she has to look for the syntactic pattern of param-
eterized enums in all the 100 submissions. A keyword search
on enum alone is insufficient as it will match all enum dec-
larations (e.g., enum { Mercury, Venus, ...}). Note that
parametrized enum takes the following form, enum { Mer-

cury(9,12), ...}. Therefore, Sarah would either have to
use regex in her query (such as enum.*\{.*(.*);) or search
for occurrences of enum, and manually check each assign-
ment to find the submissions that did not use parameterized
enum properly. Even for experienced TAs, writing regex
can be a challenging and error-prone task, especially when

212

Anne

Entity
Discovery

Entity Profile
Construction

Entity
Linking

Input: Set of Seed
Entities:
{collection, datatype, …}

Ouput: Set of
Discovered Entities:
{array, pointer, type, …}

A B C

I

II

IV

V

Entity Profiles:
Array {[]}
Declare {int = }

III

Figure 1: Anne annotates input code snippets, line
by line with natural language terms. These annota-
tions help keyword based search engines to address
NL queries.

they have to discriminate between entities such as type cast-
ing and parameters. Anne takes NL input as parameterized
enum and lists all occurrences and thus will help Sarah in
this task.

Solution. Figure 1 provides an overview of our solution to
this problem. Our tool, Anne, mines SO posts to identify
terms in SO questions that pertain to programming con-
cepts, such as enum by using Parts of Speech (PoS) tagging.
We refer to these programming concepts as named entities.
More specifically, in Step A, when given a seed entity (e.g.,
array), Anne identifies other entities (such as enum, arraylist,
collection, etc.) through PoS tagging.

In step B, Anne analyzes the SO posts to mine associa-
tions between the entities and their syntactic patterns. In
our scenario, Anne will create associations between the pro-
gramming concept enum, parameter with its syntactic pat-
tern: enum { (,) }. A result of this step, is a knowledge
base of named entities and syntactical elements most asso-
ciated with each entity.

Finally, in step C, given an input source code, Anne links
the relevant programming concepts to each line of code. In
our scenario, Anne tags the code lines from input source
code, enum {Mercury (9,12), Venus (10,13),...}, with
parameter as inline comment. As a result of this step, Sarah
can now use keyword based search engines to locate the code
using NL terms, such as parameter.

3. DEFINITIONS
We define the terms that we use in the rest of the paper

as follows.

Definition 1. Let c = (τ1, . . . , τn) be a code snippet where
each τi is a syntactic token. Any subsequence p of c is a
Syntactic Pattern occurring in c.

Definition 2. Named Entities in source code is a bi-
nary relation E ⊆ P × T such that ∀ei = (pi, ti) ∈ E, ti
is a NL phrase used by developers repeatedly to identify an
associated syntactic pattern pi.

We aim to map a given source code to its collection of en-
tities. Hence, we first need to discover these entities. A
bug description, a code comment, SO title, or any NL de-
scription of source code q, can be modeled as a sequence of

Input: Set of Seed
Entities:
{collection, datatype, …}

I

Entity Discovery

PoS Type
Detection

PoS Pattern
Mining

Candidate
Entity Mining

A B C

Ordered PoS Pattern
Sequences:
NN IN DT ENTITY IN NNS:70
NN IN DT ENTITY IN NNS IN:51
DT NN IN DT ENTITY:45
NN IN DT ENTITY IN DT NN:44
…

III

Ouput: Set of
Discovered Entities:
{array, pointer, type, …}

IVPoS Types:
collection --> [NNP, NN],
datatype --> [VB, JJ, NNP, FW, NN],
…}

II

Figure 2: Entity discovery subsystem works on NL
text using parts-of-speech (PoS) approach. We use
seed entities to discover more entities that fit into
the same grammatical sequence.

terms or NL phrases (t1, . . . , tm) that points to a set of code
snippets {c1, . . . , cn}. Each code snippet ci is a collection
of lines (li1 , . . . , lio). From a large collection of such (q, c)
pairs, our task is to find (p, t) pairs, where p is a syntactic
pattern, and t is a term sequence from the vocabulary of q.

Definition 3. Entity Discovery is the process of ex-
tracting candidate term sequences that represent entities in
source code. In other words, we find the set of term se-
quences T = t1, . . . , tn, such that each item ti in it has at
least one named entity (pj , ti) associated with it. We extract
them from the available query-code pairs (q, c).

Definition 4. The Entity Profile is a mapping ψ : T →
2P that takes term t as an input, and returns a set P ′ of syn-
tactic patterns, {p1, . . . , pk} associated with t.

Definition 5. Entity Linking in source code is the pro-
cess of associating a named entity e to a unit u of source
code. In other words, it is a mapping ∆ : C → E, where C
is the set of source code units. In this paper, we use a line
of code as a unit.

Note that a line of source code can contain several syntactic
patterns, and each syntactic pattern may be associated with
several distinct named entities. Hence, the entity linking
process may associate several entities to a line of code.

4. APPROACH
Our objective is to automatically tag lines of source code

with their associated named entities. This is accomplished
through three major steps: a) Entity Discovery, b) Entity
Profile Construction, and c) Entity Linking.

4.1 Entity Discovery
We leverage PoS tagging to discover entities from SO ti-

tles. The intuition is that developers use similar sentence
structures when they ask questions about a programming
concept. For example, some of the SO titles are in the form
of: How to declare an array in Java? and How to declare a list
in Java? We exploit this similarity in sentence structures to
extract entities. Figure 2 gives the workflow for this step.

213

Table 3: Patterns and frequencies for conditional in
Java snippets found in SO.

Uni-gram
Pattern

Normalized
Frequency

n-gram
Pattern

Normalized
Frequency

(1.00 if () { 1.00

... () 0.50

if 0.65 = (()) 0.25

... (new () { 0.25

while 0.10 ...

string 0.06 ...

We need to identify the entities relevant to a program-
ming language. We select the seed entities from a popular
tutorial site, Tutorialspoint2. Tutorialspoint groups topics
related to the programming language into a short list. For
example, Java had 39 topics and C had 29 topics. Some
of these topics were phrases such as type casting which we
mapped to a single word, cast in this case, with the help of
a language expert. We use this list of processed topics as
the seed entities (Figure 2 (I)).

For each seed entity, we extract and group the SO titles
that contain that entity. Next, for each title in a group,
we annotate its words with their corresponding PoS types
(noun, verbs, etc.,) by using an off-the-shelf PoS tagger
(Stanford Log-linear PoS Tagger [31]). We extract all PoS
sequences for every seed entity as shown in Figure 2 (II).

We use the position of the seed entity and its sequence to
discover other entities. This is in accordance with research
that has used PoS sequences to understand sentence struc-
tures [7]. Therefore, we identify the PoS sequence of each
seed entity in all the SO titles in which they appear. For
each seed entity, we rank the PoS sequences as per their
frequency of occurrences (Figure 2(III)). For example, for
array, the most frequent pattern was NN IN DT ENTITY
IN NNS where ENTITY is the placeholder for array. As
an example, the SO title, “How to determine type of ob-
ject/NN in/IN an/DT array/ENTITY of/IN objects/NNS”
has this frequent pattern. Same pattern appears in another
title, “Get an array of int/NN from/IN a/DT string/EN-
TITY of/IN numbers/NNS”. So we gather that both array
and string have the same PoS sequence. Thus we discover
more entities. To tune for precision, we use the top-most fre-
quently occurring PoS sequence (Figure 2(C)). The output
of this step is a list of discovered entity names (Figure 2(IV)).

4.2 Entity Profile Construction
Our goal in this step is to link the discovered entities with

their syntactic patterns, to create a profile for each entity.
We leverage the fact that source code has repetitive syn-

tactic patterns [15]. For instance, an array declaration has a
syntactic structure composed of a few tokens, that are re-
peated across multiple source code snippets. Tu et al. [32]
find that source code exhibits redundancies even in local con-
text i.e., in short snippet of code being edited by a developer.
They also show that frequency based n-gram patterns can
be used to extract these redundancies. Further, Gabel and
Su [10] find that the syntactic redundancy peaks at the line

2We used the categories from http://www.tutorialspoint.com

level. We leverage all these observations in finding repeating
syntactic forms for entities at line-level using n-grams.

We intend to discover these patterns (pi ∈ P ′) in source
code that are associated with specific entities (t) (e.g., ar-
ray and conditional). These pattern lengths (|pi|) can vary.
For example, an array has |[]| = 2, but a conditional has
|if () {| = 4. Let SOL be the set of all SO posts tagged
with a specific programming language L and containing at
least one code snippet per post. We need to identify the
most appropriate n-grams that represent a specific entity
from SOL. We use the TF-IDF [21, 28] over n-grams to
identify the syntactic patterns that are most associated with
a given entity in SOL (Table 3). To compute term frequency
tf(t, g) of an n-gram g, we use the SOL posts containing the
entity name in title. For IDF computation, we use all SOL
posts. Since SO post titles and code snippets are short in
nature, we ignore the length normalization. Thus, we use

the TF-IDF weight = tf(t, g).log |D|
df(g)

where |D| is the total

number of posts in SOL and df(g) is the number of such
posts containing the n-gram, g. Table 6 shows the results of
these steps for a few entities.

Controlling n-gram explosion. We are interested in key-
words related to programming concepts and not user defined
terms (variable or identifier names). Hence, we collect and
tokenize all code snippets from SOL, and rank distinct to-
kens (τi) by frequency (tf(τi)). Tokens that are program-
ming concepts will be ranked higher as opposed to user-
defined terms, since fewer snippets would have overlap be-
tween usages of user defined terms in SO posts. So, we con-
struct a list, φ(k) = {(τ1, tf(τ1)), ..., (τk, tf(τk))}, of top-k
tokens with highest frequency. The value of k needs to be
large enough to contain all keywords of the programming
language. We define a filter F (φ(k)) : ci → cif which uses
φ(k) to transform every line of code snippet ci into a line
cif with only the top-k uni-grams. This reduces the total
n-grams for each line of code, making the TF-IDF compu-
tation over n-grams tractable. Table 3 lists the n-gram as-
sociations that we mined using this approach for one entity,
conditional.

In summary, in this step, for each entity that we discover,
we identify its associated syntactic pattern, which we call
the entity profile. The collection of these entities and their
profiles serves as our entity profile knowledge base.

4.3 Entity Linking
Our goal in this step is to annotate every line in a given

input source code snippet with entity names of those entities
that appear in that line. We use the entity profile knowledge
base for this purpose. Figure 3 gives an overview of this step.

We apply the same transformation F (φ(k)) as in Sec-
tion 4.2 to every line of input code (Figure 3(A)) to remove
user defined terms, so that we get reduced number of to-
kens that pertain to programming concepts. We start with
each term being a uni-gram and continue with cumulative
aggregation into bi-grams, tri-grams, and so on, until all the
n-grams are covered.

However, not all of these n-grams represent entities. For
example else == is not an entity. Therefore, we find the
n-grams that actually represent entities by using the entity
profile knowledge base. That is, we match the syntactic-
patterns of an entity with that of the source code to deter-

214

ScorerPreprocessor Annotator

Input: Code Snippet

Output: Annotated Code

Entity Linker

A B C

Figure 3: Entity linker subsystem works line by line
on the input code, to find matching entity profiles.
Entity names whose profiles match are stamped
across the line, as shown in the example.

mine if (and which) n-grams from the source code reflect
surface forms of entities in source code.

Performing this matching is non-trivial, since n-grams are
of different lengths. Therefore, one pattern can be subsumed
within another. For example, the best syntactic match for
parameter is the bi-gram (), whereas the best match for a
conditional is the four-gram if (==). However, the bi-gram
() for parameter is subsumed by the four-gram if (==)

for conditional. Therefore, if a line of code contains a con-
ditional then both n-grams will match, where marking that
line of code with both parameter and conditional is clearly
wrong. However, when we consider the code statement, if
(isTrue(...)), both parameter and conditional entities exist.
Consider the example shown in Figure 4(B)(line 6). Anne
stamps parameter along with a loop for this reason. We call
this the subsumption problem.

To alleviate the subsumption problem, we use a scor-
ing (Figure 3(B)) function. It creates a metric signifying
how well an entity matches the line of code. In the first ex-
ample, the longer n-gram is a better match (conditional vs.
parameter). However, shorter n-grams are also of interest, as
we see in the second example. Therefore, instead of making
the entity assignment a binary decision, we rank the n-grams
using the scoring function (Equation 1).

Score = δwu + (1− δ)wn (1)

We use weights for the uni-gram and n-grams based on
their TF-IDF values. Table 3 shows the normalized weights
for an entity. Since we need to balance between the uni-
gram weights (wu) and n-gram weights (wn), we empirically
identify the distribution factor δ to be 0.6 as this gives us
the best results.

Once we determine an entity for a line of code, the anno-
tator tags the line with that entity as an in-line comment
(Figure 3(C)). This allows regular keyword-based searches
to search on the entities. Note, a line of code can have mul-
tiple relevant entities. However, too many entities per line
can reduce the quality of the search, as well as cause read-
ability issues if the end user wishes to look at the entities.
In the assignments that we use for our user study, we did not
find a line of code with more than four entities, therefore,
we use that as our threshold. We leave finding the optimal
number of entities per line of code as future work.

Table 4: No. of entities discovered is related to the
length of PoS patterns considered in our approach.
Longer patterns produce fewer entities that exhibit
higher level of similarity to seed entity.

#PoSTerms #Entities #PoSTerms #Entities

5 10k 7 12k

6 22k 8 6k

5. EVALUATION
Our evaluation goal is twofold: a) How well does Anne

link entity names to lines of code snippets? and b) How
useful are these annotations? However, due to the multi-
stage nature of the entity linking process, we divide the first
goal into two sub-goals and address them in this section.
We address the second question by conducting a user study,
which we present in Section 6.

5.1 Entity Discovery
The first question we need to answer to fulfill our goal is:

How well can we automatically identify entities that repre-
sent programming terms from SO titles?

We automatically discover entities based on the position of
the seed entity in the PoS sequence in SO titles. Therefore,
it is possible that some of the terms that we identify as
entities are incorrect. The discovery of entities depends on
the length of the SO titles and the PoS sequence lengths.

Of the 0.9 million posts in our dataset, 639K were ques-
tions in Java, whose answers also contained source code snip-
pets. The median number of terms contained in these ti-
tles was 7. Similarly, we had 139K titles in C, associated
with answers containing source code snippets; the median
for number of terms in titles was 6.

Next we perform a sensitivity analysis using the PoS se-
quences around the median values and the number of enti-
ties generated. More specifically, we evaluate PoS sequence
lengths of 5, 6, 7, and 8 in our dataset. Our findings are
presented in Table 4.

For each sets of entities discovered, we calculated the pre-
cision of results. True positives were manually evaluated
by the first two authors who were experienced in Java and
C. They verified that: (1) the entity name appeared in a
Java [29] or a C [18] textbook as a term related to a pro-
gramming concept or a programmatic structure, and (2) the
discovered entity had a syntactic pattern. The authors indi-
vidually identified the true positives and compared their re-
sults. Any differences were discussed until they both agreed
about a term. If there was disagreement that could not be
resolved, then that term was dropped from the list.

From a random sample of SO titles, two experts manually
extract the first 30 entities. The first 25 entities that they
agreed on (i.e., the intersection of their results) is used to
build a goldset. The goldset creation process is shown in
Figure 5. Stemming gives the root of the words and thus
helps in precision. Classifier separates titles with seeds from
the rest. Mixer adds noise in required proportion. Our
goldset consists of all SO posts containing these 25 entities
(162K posts) and thrice (a 1:3 split) that much of noise (i.e.,
other posts that do not contain any of these 25 entities). To
compute recall, we run Anne with five of these 25 entities
as seeds. Table 5 gives the F-measure and count of entities

215

(A) Enum Task
1 public enum Planet {//enum , parameter
2 MERCURY (3 . 7) , // parameter
3 VENUS (8 . 8 7 2) , // parameter
4 EARTH (9 . 7 8) , // parameter
5 MARS (3 . 7) , // parameter
6 JUPITER (2 4 . 7 9) , // parameter
7 SATURN (1 0 . 4 4) , // parameter
8 URANUS (8 . 8 7) , // parameter
9 NEPTUNE (1 1 . 1 5) ; // parameter

10 f ina l double su r f aceGrav i ty ;
11
12 Planet (double
13 sur faceGrav i ty){ // parameter
14 this . su r f a ceGrav i ty =
15 sur faceGrav i ty ;
16 }
17 . . .

(B) IncDec Task
int main () {

int N,A;
s can f (”%d%d”,&N,&A) ; // parameter
int ar r [N] ; // array
int i , l e f t , r i ght , f l a g =0,sum ;
for (i =0; i<N; i++) { // loop , parameter

s can f (”%d” , &ar r [i]) ; } // array , parameter
l e f t =0;
r i g h t=N−1; // decrement
while (l e f t != r i g h t){ // parameter

sum=arr [l e f t]+ ar r [r i g h t] ; // array
i f (sum<A) // parameter ,
increment , decrement

l e f t ++; // increment
else i f (sum>A) // parameter

r i ght −−; // decrement
. . .

Figure 4: Tagged versions of the tasks (A) Enum and (B) IncDec that were provided to the participants in
the user study.

Table 5: Performance of Anne Entity Discovery
module. Experiments were carried out on a gold
set with 1:1 noise and 1:3 noise. F1 indicates the
F1-score and |E| stands for the number of entities
discovered.

Pf
Java 1:1 Java 1:3 C 1:1 C 1:3

F1 |E| F1 |E| F1 |E| F1 |E|

2 0.76 21K 0.14 35K 0.66 12K 0.71 20K

3 0.94 5K 0.87 9K 0.74 10K 0.64 17K

4 0.82 7K 0.87 12K 0.81 6K 0.71 11K

5 0.82 5K 0.76 7K 0.87 3K 0.86 5K

6 0.94 2K 0.91 3K 0.89 1K 0.91 2K

7 0.81 696 0.78 1K 0.86 751 0.86 1K

8 0.81 524 0.78 807 0.89 376 0.89 606

9 0.51 99 0.47 136 0.77 253 0.71 402

discovered. We report these values for both 1:1 and 1:3
splits. Notice that with increase in noise, the F-measure
drops. We observe recall of 0.91 for both Java and C, at a
proximity of 6.

Next, we use array as the seed entity for evaluation for
both Java and C on the entire SO corpus. We discovered 20
additional entities for Java, and 18 for C, which resulted in a
precision of 0.78 for Java when considering a PoS sequence of
7 terms. For C, it gave a precision of 0.77 when considering
a PoS sequence of 6 terms.

Closest to our work are the Named Entity Recognizers
(NER). Stanford NER [9] is a popular implementation of lin-
ear chain Conditional Random Field (CRF) sequence mod-
els. Our approach is much simpler heuristic-based approach
which does not need training data. Yet, in principle, this can
be modeled as a 2-class classification problem. We trained
it with 10K tokens with POS tags where each SO title is a
document. Trained NER models that we built are shared
on Anne website. We get near-zero precision and recall of
0.2 on our goldset with these models. The objective for this
work is to showcase that entities can be detected and are
useful for search. Hence, we do not focus on improving the
training data or finding features for the classifier.

*Actual Values

|Java tagged Posts| = 27,64,961
|Java posts with one of 25 seeds| = 162,277

|Total Java posts in gold set| = 324554.

˖Seeds verified manually from the random sample by reading title-by-title.

Posts
with

stemmed
titles

Classifier

Posts with
seed entities

in title
(162K)

Posts
without

seed entities
in title

Mixer

324K (or
648 K)
posts

Snowball
English

Stemmer

Seed
entities (25)

(e.g., Array
Increment …)

Stemmed
seeds

Random
Sampling
(First 25
Seeds)

Java tagged
SO posts

(2.7 Million)

Figure 5: The goldset for evaluation is created from
SO posts by mixing posts that contain seed entities
in the title with those that do not have them.

5.2 Entity Profile Construction
The evaluation question that we ask here is: How well can

we map entities to their syntactic patterns?
For each entity, we calculate the precision of the syntactic

patterns (a n-gram sequence) extracted in the entity pro-
file construction stage. That is, we evaluate our pattern
recommendation for an entity. To do this, we can analyze
the top-1, top-2,..., top-n pattern recommendations for each
entity. Note, when we consider top-k recommendations, the
order in which a pattern appears does not matter, since “all”
these k-patterns are linked to the entity.

We analyzed top-1 to top-8 patterns, and found that the
best precision is at top-4. This is likely, because if we have
too few recommended patterns, then we miss entities. How-
ever, if there are too many recommended patterns, it adds
noise to the process. Therefore, we assess our recommenda-
tion by computing precision@4 (p@4) [21].

The precision of the entity profile knowledge base depends
on the richness and the volume of our data. In SO ti-
tles for C, the entity array appeared for more than 14K
times. Because of this, Anne gets perfect precision (Ta-
ble 6). However, although some entities, such as pointers
had more than 10K occurrences, they had many associated
patterns: struct *, int *. This leads to lower preci-

216

Table 6: Manually computed precision@4 and the
top pattern discovered for some of the entities. We
use top four patterns while annotating source code.

Entity p@4 Pattern Entity p@4 Pattern

array 1.00 [] conditional 0.75 if () {
decrement 0.75 - - increment 0.75 + +

loop 0.50 for (; ;) parameter 0.75 ()

pointer 0.50 int * variable 0.75 int

Table 7: Two factor design that counterbalances the
treatment and the task.

Enum IncDec

Tagged Group 1 Group 2

Untagged Group 2 Group 1

sion. We evaluate the patterns for the eight entities that we
found in the user study tasks. Table 6 gives the p@4 for these
entities, and shows the top pattern. The average precision
for these entities is 0.72. We also compute mean reciprocal
rank (MRR). MRR is computed as: MRR = 1

N

∑N
i=1

1
ranki

where N is the number of entities, and ranki is the rank of
first relevant pattern for the ith entity. MRR across Java and
C for the entity profiles turns out to be 0.71. Anne loses
on longer patterns and gains on shorter patterns primarily
because of subsumption.

6. USER STUDY
We evaluate the usefulness of Anne through a user study.

We recruited 16 participants who were currently a TA or
had been one for programming courses. All participants had
similar background and programming language skills. They
were given two real programming assignments to grade from
classes at a lead university. One assignment was from the
class taught using C, and the other assignment was from a
class taught using Java.

Each submission for these assignments was annotated with
the associated named entities by using the entity profile
knowledge base, which was created by using the Septem-
ber 2015 SO dump. We implemented a simple search tool
(downloadable from Anne website) to serve as a testbed to
evaluate the usefulness of Anne in a controlled environment.

6.1 Study Design
We selected the tasks for the study by first analyzing all

the assignments from the two classes. We focused on assign-
ments given earlier in the semester as these were likely to
be easy to evaluate. We needed the tasks in our study to
be within 20 minutes, so as to allow the study to be com-
pleted in an hour. We performed a pilot study with three
graduate students to identify the tasks to be used for the
study. For the pilot, we randomly identified six assignments
(3 from each class) and their student submissions. Based on
our pilot studies, we selected the following two assignments,
since the pilot participants could easily understand the code
of these two assignments, and took about 15-20 minutes to
complete the task.

The first assignment (referred to as Enum) expected stu-
dents to use parameterized enumerators when calculating

Table 8: Descriptive statistics of number of incorrect
assignments found by participants.

Enum (27 Incorrect) IncDec (15 Incorrect)

Mean Median Mean Median

Tagged 24.63 24.00 13.88 14.00

Untagged 22.38 25.50 12.00 13.00

Table 9: Terms used to calculate correctness and
completeness scores for a submission S.

Term Description

True Positive (tp) S correctly classified as incorrect.

False Positive (fp) S wrongly classified as incorrect.

False Negative (fn) S wrongly classified as correct.

True Negative (tn) S correctly classified as correct.

the weight of a person on different planets. The second as-
signment (referred to as IncDec) asked students to operate
over a sorted list, while ensuring that their algorithm had
a time complexity of O(n). The former assignment was in
Java and had 73 student submissions; the latter was in C
and included 96 submissions. Figure 4 provides snippets of a
student submission for both tasks. Participants had to eval-
uate the correctness of each student submission and stamp
their feedback on the incorrect ones. The Enum and IncDec
tasks had 27 and 15 incorrect submissions, respectively.

We followed a two-factor, within-subject study design. We
created untagged and tagged versions for each set of submis-
sions, where the former was used as the control condition,
and the latter as the experimental condition. We counter-
balanced the order in which participants were placed in a
treatment group, as well as the task-order that was associ-
ated with a specific treatment (Table 7). That is, eight par-
ticipants had to evaluate assignment submissions that were
untagged as their first task, while the other eight partici-
pants evaluated the tagged submissions as their first task.
Similarly, half the times Enum appeared as a tagged version,
and as untagged for the rest.

Participants first filled out background information, and
were provided a tutorial of the tool (10 min). They were then
asked to evaluate a sample assignment (on pointer usage) to
gain a hands-on understanding of the tool and the evaluation
that they had to perform (10-15 min).

They were given instruction sheets that explained the dif-
ferent features of Anne (see Figure 6 for a snapshot of UI).
This ensured that they spent their time on the task and
not on learning the tool. They were also provided with in-
structions on how to evaluate submissions, which included
the problem statement of the assignment, an explanation of
the expected answer, and the feedback that needed to be
stamped on the submission. We used the instructions that
were provided to the TAs of the (actual) classes to create
these materials.

Once they were comfortable with the tool, the experiment
started. The time for each task was fixed at 20 minutes.
We conducted an exit interview, where we asked whether
they would use Anne for the next class that they TA for.
Resources used in this study including video recordings of
the study are available on the Anne website.

217

File navigator

Highlight matches

Search across files

Files with
match

Files with
no match

Search within file

Figure 6: Code search tool used for giving feedback
to student assignments. This tool allows us to toggle
tagging on and off for evaluation.

Table 10: Correctness/Completeness metrics of par-
ticipants with std. deviation in parentheses.

Correctness Completeness

Tagged Untagged Tagged Untagged

Enum 1.00(0.00) 1.00(0.00) 0.91(0.25) 0.83(0.06)

IncDec 0.98(2.79) 0.98(2.59) 0.93(0.20) 0.80(0.09)

6.2 Results
Subjects in Experimental condition (Stag) heavily used NL

terms in their queries. For example, for the IncDec task,
one participant (P17), by using a single search query “in-
crement decrement”, was able to identify all the incorrect
submissions. Some participants (e.g., P13) created more
queries: “increment; decrement; increment decrement; feed-
back” to get the same results. In contrast, subjects in the
Control condition (Sraw) made more sophisticated queries,
many of which were not successful. For example, P6 tried
many queries: “left;++;++ --;binary;while <;for”, and was only
able to find 13 out of the 15 incorrect submissions.

Table 8 provides the mean and median number of the
“incorrect submissions” that participants found. Note that
Enum had 27 incorrect submissions out of the 73 total sub-
missions, and IncDec had 15 incorrect submissions out of
the 96 total submissions.

We evaluate the quality of the participants’ work by cal-
culating the completeness and correctness metrics, for each
task (Enum vs. IncDec) and treatment (tagged vs. un-
tagged). Table 9 lists the terms used for these metrics. The
correctness metric is calculated as the number of correct
classifications divided by the total number of classifications
(tp / (tp + fp)). The completeness metric is calculated as
the number of true positives divided by the total number of
true positives and false negatives (tp / (tp + fn)).

Table 10 provides the correctness and completeness met-
rics along with standard deviations. We observe that both
Stag and Sraw obtained very similar correctness scores. This
likely occurred because after identifying the submissions,
participants evaluated the code before stamping their feed-
back. Since they were previously TAs and the assignment
was relatively simple, their evaluations were accurate. How-
ever, for the completeness metric we see that Stag perform
better than Sraw . This means that more incorrect submis-

Table 11: Time taken to complete (in minutes) as-
sessment for tagged and untagged versions.

Enum IncDec

Mean Median SD Mean Median SD

Tagged 8.71 7.90 2.61 11.50 13.88 4.66

Untagged 12.90 14.78 3.43 12.98 12.80 4.12

sions were missed by Sraw . The experience and individ-
ual differences play a larger role when participants use a
keyword-based search, explaining the higher variance in Stag .

Next, we analyze the time to complete the task. We found
that a majority of participants in both treatments followed
a two-stage process. As a first pass, participants used the
search feature to locate those submissions that did not con-
tain the terms in which they were interested. Then as a
second pass, they manually investigated the submissions to
double check their work3 if they had time.

Here we report on times to complete the task of the first
phase alone, since this best compares the two search pro-
cesses. Table 11 reports the time (in min) to complete the
task and the standard deviation. We observe that Stag was
faster. There is a bigger time difference for the Enum task
as compared to the IncDec task. This is likely because eval-
uating the IncDec task was more complex, since participants
analyzed the algorithm to determine its complexity. In the
Experimental treatment, participants more quickly obtained
the set of incorrect submissions, therefore, they may have
spent less time in evaluating the other correct submissions.

Next we test for statistical difference between the two
treatments for the completeness and time metrics. We per-
form Shapiro-Wilk test of normality (at p < 0.05) and find
that both time and completeness are normally distributed.
Therefore, we use two-way ANOVA to account for any inter-
action effects between task and type. For completeness, we
find no statistical significance at p< 0.05 level; F(1,29)=3.15,
p=0.08. Stag had higher completeness metrics. There was
no interaction between the treatment (tagged vs. untagged)
and the task; F(1,29)=0.018; p=0.89. When using Cohen’s
d, we get an effect size of 0.64 (medium). So, we gather that
tagging does not negatively affect completeness significantly.

When considering time, we see a significant difference (p<
0.05) between the two treatment conditions; F(1,29)=4.50,
p=0.04. Stag took less time to complete tasks. There was no
interaction between the treatment and task; F(1,29)=1.15;
p=0.29. We get a Cohen’s d value of 0.75 (medium).

In summary, participants are able to complete the tasks
in much shorter time (29% less) without compromising sig-
nificantly on correctness and completeness. The post-task
interviews show that tagged search is useful.

7. LIMITATIONS AND THREATS
Utility of our approach can be increased by discovering

entities with multiple terms in their name, and also by de-
tecting patterns across multiple lines of code. In principle,
our approach can still be used where we treat every snip-
pet as one single line and apply the same technique as we
did for uni-gram entity names. As the length of the line

3We report correctness and completeness metrics after they
finished their tasks and, therefore, include both passes.

218

increases, number of n-grams in the lines increase and this
causes computational overhead. Hence, we look forward to
work on more efficient models to support this research.

Handling the subsumption problem where shorter pat-
terns appear inside longer patterns is very hard to address
in a language agnostic manner. Although our scoring func-
tion alleviates this issue, this can still impact correctness
and hence needs attention in future work.

Users may find it unintuitive to formulate queries with
terms that do not appear in code. In our case, we tagged
the code with terms and thus we circumvented the issue.

We have limited the implementation and evaluation of our
work to Java and C programming languages. Yet, other
languages, especially, markup languages and functional lan-
guages may put forth different challenges. While our tech-
nique is statistical by nature and leverages Information Re-
trieval techniques, the implementation uses language depen-
dent techniques for parsing, and to clean up the snippets.

8. RELATED WORK
To the best of our knowledge, this is the first work to tag

code using an Entity Linking based approach.

Code Search. Existence of several code search engines such
as Krugle [1], codease.com and searchcode.com corroborates
the fact that code search is of interest to developers and
researchers. FIRE SOCO task4 calls for similarity compu-
tation of source code. Our work focuses on improving code
search in cases where existing vocabulary does not help with
retrieval. Begel [6] argues that developers ask questions that
can be answered with meta data about source code. Our ap-
proach uses much richer extraneous metadata coming from
crowdsourced information. Moreover, we solve a fundamen-
tally different problem of bridging the gap between NL and
syntactic form of source code entities such as array, which
will benefit all these research efforts.

Tagging Source Code. The closest work to this is on tag-
ging source code for concept location using a variety of ap-
proaches [27, 20]. Pollock et al. [25] discuss the advances in
NL program analysis research and associated tools. How-
ever, these techniques depend on vocabulary in source code
and hence solve different problems. Once entity profiles are
built, we do not depend on any other source or user defined
terms to tag the source code.

Missing NL Terms. The problem of missing vocabulary is
highlighted by Howard et al. [16]. They mine semantically
similar word pairs from comments. They find synonyms
such as “(search,find),(verifies,assert),...” by matching words
from code comments with terms in a method name. David
and James [33] show how programming constructs translate
to English language. They argue in favor of a need for a
programming language that is more natural. On these lines,
we supplement existing source code with NL terms.

Role of NL in Retrieval Systems. Hill et al. [14] propose
a system that improves source code search by allowing users
to specify NL phrase representation of method signatures.
Arnold and Lieberman [4] suggest that there exists a gap
between unambiguous source code representation to a more
ambiguous natural description of the functionality. They be-
lieve, programming environments should support developers

4http://users.dsic.upv.es/grupos/nle/soco/

to specify their purpose in natural form to help them to con-
struct source code from such specifications. Exemplar is
a search engine to find relevant executable applications for
reuse. Exemplar links concepts to source code via the API
calls they use. Prompter [26] converts the given code con-
text automatically into a query to retrieve relevant posts
from SO. Wursch et al. [34] discuss in detail, the need to
support NL queries in IDEs. Our work supports such tools
with an approach to link NL terms to source code.

Entity Recognition and Linking. Entity linking is a well-
researched problem in IR. This is also referred to as Wikifica-
tion and Record Linkage [11]. TwiNER system [19] performs
Named Entity Recognition (NER) in Twitter streams. Their
objective is to identify named entities, such as location and
people in twitter streams in an unsupervised manner using
a combination of local and global context of the n-grams in
Twitter stream. In web text, Downey et al. [8] show that
their statistical approach gives better results when compared
with supervised approaches. While these apply to source
code, the algorithms and approach need significant modifi-
cation. In this work, we go beyond the common structural
entities such as classes, methods and identifiers. We use
entity linking approach to find and tag entities that have
different NL and syntactic surface forms.

Automated Programming Assignment Feedback. Gul-
wani et al. [12] describe a dynamic analysis based approach
to test whether a student’s work matches teacher’s specifica-
tion. The availability of such specifications is a requirement
for this approach. Functional correctness of assignments
are checked in a variety of ways as surveyed by Ihantola
et al. [17]. While we use grading as our use case, our goal is
to facilitate search using NL terms.

9. CONCLUSIONS AND FUTURE WORK
In this work, we present a technique that leverages the

structural similarities in how people phrase programming
questions, and the repetition of syntactic structures in source
code, to map source code lines to their programming con-
cepts. This opens up new opportunities to support tools and
techniques that connect natural language to source code.
Search engines and IDEs can use this mapping to improve
code search over NL queries. We show how such a mapping
can help in academic assignment search through our tool
prototype, Anne.

Even though our approach, at least in theory, can be ex-
tended to program blocks with multiple lines of code, it
might need more sophisticated code models for syntactic
matching. Another interesting research direction will be to
support longer NL phrases. Our approach is predominantly
language independent. We look forward to thoroughly eval-
uating our work on a variety of languages, in addition to Java
and C, especially in functional and scripting languages.

10. ACKNOWLEDGMENTS
This work is supported in part by Confederation of In-

dian Industries (CII), Microsoft Research, National Science
Foundation grants HCC 1559657 and CCF 1253786, Infosys
Foundation, and Infosys Center for Artificial Intelligence at
IIIT-Delhi. Authors thank Ayushi Rastogi and Niharika
Sachdeva for their feedback on initial drafts of the paper
and anonymous reviewers for their valuable suggestions.

219

11. REFERENCES
[1] Krugle. http://www.krugle.com/, (accessed 2016-07-30).

[2] Openhub. https://www.openhub.net/, (accessed
2016-07-30).

[3] Stack overflow. http://stackoverflow.com/, (accessed
2016-07-30).

[4] K. C. Arnold and H. Lieberman. Managing ambiguity in
programming by finding unambiguous examples. OOPSLA
’10, pages 877–884, New York, NY, USA, 2010.

[5] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: A search engine for open
source code supporting structure-based search. OOPSLA
’06, pages 681–682, New York, NY, USA, 2006.

[6] A. Begel. Codifier: A programmer-centric search user
interface. 2007.

[7] X. Ding, B. Liu, and L. Zhang. Entity discovery and
assignment for opinion mining applications. In Proceedings
of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’09, pages
1125–1134, New York, NY, USA, 2009.

[8] D. Downey, M. Broadhead, and O. Etzioni. Locating
complex named entities in web text. In Proceedings of the
20th International Joint Conference on Artifical
Intelligence, IJCAI’07, pages 2733–2739, San Francisco,
CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[9] J. R. Finkel, T. Grenager, and C. Manning. Incorporating
non-local information into information extraction systems
by gibbs sampling. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics,
ACL ’05, pages 363–370, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics.

[10] M. Gabel and Z. Su. A study of the uniqueness of source
code. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE ’10, pages 147–156, NY, USA, 2010.

[11] A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental
record linkage. Proc. VLDB Endow., 7(9):697–708, 2014.

[12] S. Gulwani, I. Radiček, and F. Zuleger. Feedback
generation for performance problems in introductory
programming assignments. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 41–51, New
York, NY, USA, 2014.

[13] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What would other programmers do: Suggesting
solutions to error messages. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
’10, pages 1019–1028, New York, NY, USA, 2010.

[14] E. Hill, L. Pollock, and K. Vijay-Shanker. Improving source
code search with natural language phrasal representations
of method signatures. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’11, pages 524–527,
Washington, DC, USA, 2011.

[15] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu.
On the naturalness of software. In Proceedings of the 34th
International Conference on Software Engineering, ICSE
’12, pages 837–847, Piscataway, NJ, USA, 2012.

[16] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker.
Automatically mining software-based, semantically-similar
words from comment-code mappings. In Proceedings of the
10th Working Conference on Mining Software Repositories,
MSR ’13, pages 377–386, Piscataway, NJ, USA, 2013.

[17] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä.
Review of recent systems for automatic assessment of
programming assignments. In Proceedings of the 10th Koli
Calling International Conference on Computing Education
Research, Koli Calling ’10, pages 86–93, NY, USA, 2010.

[18] B. Kernighan and D. Ritchie. The C Programming
Language. Prentice-Hall software series. Prentice Hall, 1988.

[19] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S.

Lee. Twiner: Named entity recognition in targeted twitter
stream. In Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’12, pages 721–730, New
York, NY, USA, 2012.

[20] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature
location via information retrieval based filtering of a single
scenario execution trace. In Proceedings of the
Twenty-second IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, pages 234–243,
New York, NY, USA, 2007.

[21] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.

[22] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An
information retrieval approach to concept location in source
code. In Reverse Engineering, 2004. Proceedings. 11th
Working Conference on, pages 214–223, Nov 2004.

[23] P. W. McBurney and C. McMillan. Automatic
documentation generation via source code summarization
of method context. In Proceedings of the 22Nd
International Conference on Program Comprehension,
ICPC 2014, pages 279–290, New York, NY, USA, 2014.

[24] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and
C. Fu. Portfolio: Searching for relevant functions and their
usages in millions of lines of code. ACM Trans. Softw. Eng.
Methodol., 22(4):37:1–37:30, Oct. 2013.

[25] L. L. Pollock, K. Vijay-Shanker, E. Hill, G. Sridhara, and
D. Shepherd. Natural language-based software analyses and
tools for software maintenance. In A. D. Lucia and
F. Ferrucci, editors, ISSSE, volume 7171 of Lecture Notes
in Computer Science, pages 94–125. Springer, 2011.

[26] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and
M. Lanza. Mining stackoverflow to turn the ide into a
self-confident programming prompter. In Proceedings of the
11th Working Conference on Mining Software Repositories,
MSR 2014, pages 102–111, New York, NY, USA, 2014.

[27] D. Poshyvanyk, M. Gethers, and A. Marcus. Concept
location using formal concept analysis and information
retrieval. ACM Trans. Softw. Eng. Methodol.,
21(4):23:1–23:34, Feb. 2013.

[28] P. C. Rigby and M. P. Robillard. Discovering essential code
elements in informal documentation. In Proceedings of the
2013 International Conference on Software Engineering,
ICSE ’13, pages 832–841, Piscataway, NJ, USA, 2013.

[29] H. Schildt. Java: The Complete Reference, Ninth Edition.
The Complete Reference. McGraw-Hill Education, 2014.

[30] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’10, pages 43–52, New York,
NY, USA, 2010. ACM.

[31] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 173–180, Stroudsburg, PA,
USA, 2003. Association for Computational Linguistics.

[32] Z. Tu, Z. Su, and P. Devanbu. On the localness of software.
In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
2014, pages 269–280, New York, NY, USA, 2014.

[33] D. Vadas and R. J. Curran. Programming with unrestricted
natural language. In Proceedings of the Australasian
Language Technology Workshop 2005, pages 191–199, 2005.

[34] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall. Supporting
developers with natural language queries. In Proceedings of
the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, pages 165–174,
New York, NY, USA, 2010.

220

